3.149 \(\int \frac{(2+3 x^2) \sqrt{3+5 x^2+x^4}}{x^9} \, dx\)

Optimal. Leaf size=111 \[ -\frac{11 \left (x^4+5 x^2+3\right )^{3/2}}{216 x^6}-\frac{\left (x^4+5 x^2+3\right )^{3/2}}{12 x^8}+\frac{67 \left (5 x^2+6\right ) \sqrt{x^4+5 x^2+3}}{1728 x^4}-\frac{871 \tanh ^{-1}\left (\frac{5 x^2+6}{2 \sqrt{3} \sqrt{x^4+5 x^2+3}}\right )}{3456 \sqrt{3}} \]

[Out]

(67*(6 + 5*x^2)*Sqrt[3 + 5*x^2 + x^4])/(1728*x^4) - (3 + 5*x^2 + x^4)^(3/2)/(12*x^8) - (11*(3 + 5*x^2 + x^4)^(
3/2))/(216*x^6) - (871*ArcTanh[(6 + 5*x^2)/(2*Sqrt[3]*Sqrt[3 + 5*x^2 + x^4])])/(3456*Sqrt[3])

________________________________________________________________________________________

Rubi [A]  time = 0.0861399, antiderivative size = 111, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {1251, 834, 806, 720, 724, 206} \[ -\frac{11 \left (x^4+5 x^2+3\right )^{3/2}}{216 x^6}-\frac{\left (x^4+5 x^2+3\right )^{3/2}}{12 x^8}+\frac{67 \left (5 x^2+6\right ) \sqrt{x^4+5 x^2+3}}{1728 x^4}-\frac{871 \tanh ^{-1}\left (\frac{5 x^2+6}{2 \sqrt{3} \sqrt{x^4+5 x^2+3}}\right )}{3456 \sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[((2 + 3*x^2)*Sqrt[3 + 5*x^2 + x^4])/x^9,x]

[Out]

(67*(6 + 5*x^2)*Sqrt[3 + 5*x^2 + x^4])/(1728*x^4) - (3 + 5*x^2 + x^4)^(3/2)/(12*x^8) - (11*(3 + 5*x^2 + x^4)^(
3/2))/(216*x^6) - (871*ArcTanh[(6 + 5*x^2)/(2*Sqrt[3]*Sqrt[3 + 5*x^2 + x^4])])/(3456*Sqrt[3])

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 834

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m
 + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
 + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rule 806

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2)), x] - Dist[(b
*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x],
x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[Sim
plify[m + 2*p + 3], 0]

Rule 720

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(m + 1)*
(d*b - 2*a*e + (2*c*d - b*e)*x)*(a + b*x + c*x^2)^p)/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[(p*(b^2 -
4*a*c))/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[
{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m +
2*p + 2, 0] && GtQ[p, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\left (2+3 x^2\right ) \sqrt{3+5 x^2+x^4}}{x^9} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{(2+3 x) \sqrt{3+5 x+x^2}}{x^5} \, dx,x,x^2\right )\\ &=-\frac{\left (3+5 x^2+x^4\right )^{3/2}}{12 x^8}-\frac{1}{24} \operatorname{Subst}\left (\int \frac{(-11+2 x) \sqrt{3+5 x+x^2}}{x^4} \, dx,x,x^2\right )\\ &=-\frac{\left (3+5 x^2+x^4\right )^{3/2}}{12 x^8}-\frac{11 \left (3+5 x^2+x^4\right )^{3/2}}{216 x^6}-\frac{67}{144} \operatorname{Subst}\left (\int \frac{\sqrt{3+5 x+x^2}}{x^3} \, dx,x,x^2\right )\\ &=\frac{67 \left (6+5 x^2\right ) \sqrt{3+5 x^2+x^4}}{1728 x^4}-\frac{\left (3+5 x^2+x^4\right )^{3/2}}{12 x^8}-\frac{11 \left (3+5 x^2+x^4\right )^{3/2}}{216 x^6}+\frac{871 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{3+5 x+x^2}} \, dx,x,x^2\right )}{3456}\\ &=\frac{67 \left (6+5 x^2\right ) \sqrt{3+5 x^2+x^4}}{1728 x^4}-\frac{\left (3+5 x^2+x^4\right )^{3/2}}{12 x^8}-\frac{11 \left (3+5 x^2+x^4\right )^{3/2}}{216 x^6}-\frac{871 \operatorname{Subst}\left (\int \frac{1}{12-x^2} \, dx,x,\frac{6+5 x^2}{\sqrt{3+5 x^2+x^4}}\right )}{1728}\\ &=\frac{67 \left (6+5 x^2\right ) \sqrt{3+5 x^2+x^4}}{1728 x^4}-\frac{\left (3+5 x^2+x^4\right )^{3/2}}{12 x^8}-\frac{11 \left (3+5 x^2+x^4\right )^{3/2}}{216 x^6}-\frac{871 \tanh ^{-1}\left (\frac{6+5 x^2}{2 \sqrt{3} \sqrt{3+5 x^2+x^4}}\right )}{3456 \sqrt{3}}\\ \end{align*}

Mathematica [A]  time = 0.0282441, size = 82, normalized size = 0.74 \[ \frac{6 \sqrt{x^4+5 x^2+3} \left (247 x^6-182 x^4-984 x^2-432\right )-871 \sqrt{3} x^8 \tanh ^{-1}\left (\frac{5 x^2+6}{2 \sqrt{3} \sqrt{x^4+5 x^2+3}}\right )}{10368 x^8} \]

Antiderivative was successfully verified.

[In]

Integrate[((2 + 3*x^2)*Sqrt[3 + 5*x^2 + x^4])/x^9,x]

[Out]

(6*Sqrt[3 + 5*x^2 + x^4]*(-432 - 984*x^2 - 182*x^4 + 247*x^6) - 871*Sqrt[3]*x^8*ArcTanh[(6 + 5*x^2)/(2*Sqrt[3]
*Sqrt[3 + 5*x^2 + x^4])])/(10368*x^8)

________________________________________________________________________________________

Maple [A]  time = 0.016, size = 135, normalized size = 1.2 \begin{align*} -{\frac{1}{12\,{x}^{8}} \left ({x}^{4}+5\,{x}^{2}+3 \right ) ^{{\frac{3}{2}}}}-{\frac{11}{216\,{x}^{6}} \left ({x}^{4}+5\,{x}^{2}+3 \right ) ^{{\frac{3}{2}}}}+{\frac{67}{864\,{x}^{4}} \left ({x}^{4}+5\,{x}^{2}+3 \right ) ^{{\frac{3}{2}}}}-{\frac{335}{5184\,{x}^{2}} \left ({x}^{4}+5\,{x}^{2}+3 \right ) ^{{\frac{3}{2}}}}+{\frac{871}{10368}\sqrt{{x}^{4}+5\,{x}^{2}+3}}-{\frac{871\,\sqrt{3}}{10368}{\it Artanh} \left ({\frac{ \left ( 5\,{x}^{2}+6 \right ) \sqrt{3}}{6}{\frac{1}{\sqrt{{x}^{4}+5\,{x}^{2}+3}}}} \right ) }+{\frac{670\,{x}^{2}+1675}{10368}\sqrt{{x}^{4}+5\,{x}^{2}+3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2+2)*(x^4+5*x^2+3)^(1/2)/x^9,x)

[Out]

-1/12*(x^4+5*x^2+3)^(3/2)/x^8-11/216*(x^4+5*x^2+3)^(3/2)/x^6+67/864/x^4*(x^4+5*x^2+3)^(3/2)-335/5184/x^2*(x^4+
5*x^2+3)^(3/2)+871/10368*(x^4+5*x^2+3)^(1/2)-871/10368*arctanh(1/6*(5*x^2+6)*3^(1/2)/(x^4+5*x^2+3)^(1/2))*3^(1
/2)+335/10368*(2*x^2+5)*(x^4+5*x^2+3)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.46421, size = 157, normalized size = 1.41 \begin{align*} -\frac{871}{10368} \, \sqrt{3} \log \left (\frac{2 \, \sqrt{3} \sqrt{x^{4} + 5 \, x^{2} + 3}}{x^{2}} + \frac{6}{x^{2}} + 5\right ) - \frac{67}{864} \, \sqrt{x^{4} + 5 \, x^{2} + 3} - \frac{335 \, \sqrt{x^{4} + 5 \, x^{2} + 3}}{1728 \, x^{2}} + \frac{67 \,{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}}}{864 \, x^{4}} - \frac{11 \,{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}}}{216 \, x^{6}} - \frac{{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}}}{12 \, x^{8}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(1/2)/x^9,x, algorithm="maxima")

[Out]

-871/10368*sqrt(3)*log(2*sqrt(3)*sqrt(x^4 + 5*x^2 + 3)/x^2 + 6/x^2 + 5) - 67/864*sqrt(x^4 + 5*x^2 + 3) - 335/1
728*sqrt(x^4 + 5*x^2 + 3)/x^2 + 67/864*(x^4 + 5*x^2 + 3)^(3/2)/x^4 - 11/216*(x^4 + 5*x^2 + 3)^(3/2)/x^6 - 1/12
*(x^4 + 5*x^2 + 3)^(3/2)/x^8

________________________________________________________________________________________

Fricas [A]  time = 1.41226, size = 261, normalized size = 2.35 \begin{align*} \frac{871 \, \sqrt{3} x^{8} \log \left (\frac{25 \, x^{2} - 2 \, \sqrt{3}{\left (5 \, x^{2} + 6\right )} - 2 \, \sqrt{x^{4} + 5 \, x^{2} + 3}{\left (5 \, \sqrt{3} - 6\right )} + 30}{x^{2}}\right ) + 1482 \, x^{8} + 6 \,{\left (247 \, x^{6} - 182 \, x^{4} - 984 \, x^{2} - 432\right )} \sqrt{x^{4} + 5 \, x^{2} + 3}}{10368 \, x^{8}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(1/2)/x^9,x, algorithm="fricas")

[Out]

1/10368*(871*sqrt(3)*x^8*log((25*x^2 - 2*sqrt(3)*(5*x^2 + 6) - 2*sqrt(x^4 + 5*x^2 + 3)*(5*sqrt(3) - 6) + 30)/x
^2) + 1482*x^8 + 6*(247*x^6 - 182*x^4 - 984*x^2 - 432)*sqrt(x^4 + 5*x^2 + 3))/x^8

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (3 x^{2} + 2\right ) \sqrt{x^{4} + 5 x^{2} + 3}}{x^{9}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**2+2)*(x**4+5*x**2+3)**(1/2)/x**9,x)

[Out]

Integral((3*x**2 + 2)*sqrt(x**4 + 5*x**2 + 3)/x**9, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x^{4} + 5 \, x^{2} + 3}{\left (3 \, x^{2} + 2\right )}}{x^{9}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(1/2)/x^9,x, algorithm="giac")

[Out]

integrate(sqrt(x^4 + 5*x^2 + 3)*(3*x^2 + 2)/x^9, x)